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LETTER TO THE EDITOR 

Multifractal wavefunctions at the mobility edge 
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Physics Department, Division of Theoretical Physics, University of Ioannina, Ioannina 
451 10, Greece 

Received 9 November 1989 

Abstract. I describe the critical behaviour of wavefunctions at the Anderson metal-insulator 
transition in terms of fractal measures. At the mobility edge the wavefunctions have 
structure on all lengths and they scale with a continuous set of non-related exponents 0,. 
The results are compared with field-theoretic calculations by Wegner in d = 2 +  E. 

Electronic wavefunctions in disordered quantum tight-binding Hamiltonians above 
and below the Anderson transition [ 11 are geometrically simple. The localised 
wavefunctions display a single dominant maximum followed by an exponential decay 
of their amplitude. They are characterised by a localisation length which is related to 
the support of the wavefunction. Although the amplitude of the extended states remains 
constant on average they exhibit many peaks which indicate the presence of fluctuations. 
These fluctuations increase as one approaches the mobility edge. Precisely at the 
mobility edge the localisation length and the characteristic length describing the range 
of fluctuations diverge. The wavefunction shares the properties of both the extended 
and the localised states. One might expect in this case that the wavefunctions exhibit 
self-similar fluctuations on all length scales larger than the lattice spacing, and have 
a fractal character. 

Critical wavefunctions of simple one-dimensional systems with an incommensurate 
modulation superimposed on the crystalline structure and models for quasicrystals 
have been studied before [2-41. It was found that at the mobility edge the wavefunction 
is a curious intermediate between extended and localised states and is characterised 
by a continuous set of non-simply related multifractal exponents D,, E [-CO, +CO]. 
This means that in contrast to the usual critical phenomena the ( q +  1)th moment is 
described by a scaling exponent which cannot be related to that of the qth moment 
by a simple gap exponent. The one-parameter scaling idea [ 5 ]  which is the simplest 
way to understand the predictions of the localisation theory, in this sense, must be 
reconsidered as was done in other examples such as aggregate structures and strange 
objects [6 ] .  However, within the field theoretic framework of the Anderson transition 
pioneered by Wegnert the infinite set of D, is not incompatible with the one-parameter 
scaling theory. 

The behaviour of the wavefunctions at the critical point in the presence of a 
disordered potential is certainly more complicated. Indications come from several 
sources [8,9] for the absence of conventional diffusive forms of eigenfunction correla- 
tions at the mobility edge. A properly defined autocorrelation function [8] which 

T The beta and zeta functions are computed to four-loop order in d = 2 +  E dimensions. A negative correction 
for the conductivity exponent 5 is found, i.e. 5 = 1 - 9 l ( 3 ) ~ ~ / 4 + 0 ( ~ ~ )  which gives Y = S / E  violating the 
inequality Y z 2 / d .  
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describes the spatial fluctuations and the two-particle spectral function S(  q, o) [9] 
have revealed novel dependences. They are characterised by power law divergencies 
described by one number also regarded as a fractal dimension. From a different 
viewpoint non-Gaussian sample-to-sample fluctuations, characterised by many unre- 
lated generalised Lyapunov exponent [lo], are seen in one-dimensional (localised) 
systems when the disorder is weak. 

This numerical evidence combined with the field-theoretic results by Wegner [ 71 
and more recent considerations [lo, 1 1 1  might be interpreted as due to the fact that 
the wavefunctions at the mobility edge of disordered systems are described in terms 
of fractal measures. We will use the multifractal approach to investigate wavefunctions 
at the Anderson transition in the presence of a three-dimensional random potential. 
The method is commonly used in the theory of dynamical systems at the onset of 
chaos and has been used to describe strange attractors [12,13] and aggregates [6]. We 
utilise the fact that one has to deal with scaling of distributions rather than simple 
averages. The different moments for the distribution of the wavefunction amplitude 
are considered and shown to scale in different ways at the modility edge. We find that 
an infinite set of non-related scaling exponents Dq is required for their description. 
We also study the local wavefunction amplitude distributions and their deviations from 
the approximate log-normal law which is approximately valid for strong disorder. 

We have examined the discrete three-dimensional Schrodinger equation with a 
random potential at each lattice site, described by the Hamiltonian: 

using an orthogonalised site basis representation. The sums extend over all lattice 
sites r and ( r ,  r ’ )  denotes all nearest-neighbour pairs of sites in a three-dimensional 
lattice. The site energies E,  are independent random variables chosen from a flat 
probability distribution on the interval [- W/2, W/2]. The parameter W describes 
the strength disorder and the metal-insulator transition is believed to occur at W, = 16.5 
[ 141. For W > W, all states are localised and the conductivity is zero, while for W < W, 
mobility edges appear in the band separating localised states near the edges from 
extended states near the band centre. In the following we discuss (1) mostly at the 
critical region ( W = W,) when the mobility edges coincide at E,  = 0. Our method relies 
on numerical computations in finite samples and a finite-size scaling analysis. The 
complete eigensolutions are numerically obtained for many random samples of cubic 
lattices with periodic boundary conditions in all directions. The localisation length 
diverges at E = O  which causes an uncertainty in determining E, in finite samples, 
given by AE,K L-’I”. In order to consider only critical states we restricted our study 
to a narrow window of energies near the band centre. In fact, we examined the states 
in a band of width AEc centred at E = 0 whose number is proportional to Ld- ’ /” .  As 
the system size increases one notices that the number of the critical states remains 
considerable in proportion to the total number of states ( L d )  although the width of 
the energy window A E  rapidly diminishes. This depends on the value of the critical 
exponent v (e.g. v-’= E + O ( E ~ ) ,  in d = 2 + ~ ’ ) .  The inequality v 3 2 / d  should be 
obeyed for disordered systems as proved by Chayes er a1 [15] and discussed in [16]. 

We have obtained numerical evidence that the critical wavefunctions have a multi- 
fractal character. In particular we have computed 0, which obeys 
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The given lattice is partitioned into boxes of size 1 3 ,  the measure pi is the amplitude 
squared on the ith box and the limit 1 + 0 is taken. In a more straightforward approach 
we choose to vary instead the lattice size. We evaluate the critical wavefunction 
amplitudes IJln(r)l for energies E, in the critical energy window for cubic lattices of 
size N = L3. We view them as functions defined on cubes of linear size one and as N 
increases the lattice spacing proceeds towards zero. To compute ( 2 )  we first normalise 
the wavefunctions on every lattice size. By plotting log((Z,(Jl,(r)12q)) against log( L )  
in figure 1 in accord with ( 2 )  we find D,. The size of the critical energy window is 
chosen so that the number of eigenvalues is much less than L. For a given L, at most 
five critical eigenvalues were considered. Proper statistical averages of the moments 
are taken for fixed system size (up to N = 203) and the statistical ensemble consists of 
more that 500 samples in each case. Our procedure is very accurate for small and 
positive values of q. It becomes not so accurate for larger q and even worse for negative 
q. In the latter case a larger statistical ensemble is required. 

In figure 2 is shown D,, which may be interpreted as a generalised dimension of 
the set on which the qth moment of the squared wavefunction resides. One sees that 
at the mobility edge the wavefunction is characterised by a continuous set of scaling 
exponents. It is possible to obtain an f ( a )  spectrum of scaling indices by Legendre 
transforming D,. Then f( a )  indicates how much of a set is composed of regions that 
scale with an exponent a. For a more detailed discussion of the definitions and 
interpretations of 0, and the statistical mechanics of multifractals the reader is referred 
to [ 2 , 6 ] .  Our results for the critical indices are compared with the expressions given 
by Wegner [7]. They were derived from nonlinear U models in d = 2 +  E dimensions 
by studying the ensemble averaged moments of the localised wavefunction component 
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Figure 1.  The log-log plots of the 9th spatially averaged fluctuation moment ( Z r l $ n ( r ) 1 2 q ) ,  
for wavefunctions in the critical energy window AE,  against the linear system size L. The 
slopes give ( q - l ) D ,  except when q = 1 .  Then (Z , [+n(r ) l*  lnl+,,(r)12) is plotted against 
In(L) and the corresponding slope gives precisely the information dimension D, . 
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Figure 2. The main scaling exponents Dq are plotted against q for the wavefunction at 
the localisation threshold in three dimensions. The numerical results are indicated within 
their error bars arising from the least-squares fit. Note that Do= 3, D, =2.00*0.01, 
D2=1.33i0.O2, D3=1.O3i0.O3, D,=0.79*0.03, D5=O.68i0.O4. For the correlation 
dimension the fractal exponent determined in [8] gives D =  1.7 i0 .3 ,  which should be 
compared with D,. It should also be noted that the first order in E gives the correct result 
for D,  while the four-loop order yields large overestimates (especially for q > 1 ) .  

where ( p ( E ) )  is the averaged density of states. The anomalous scaling of P, was 
related to the multifractal structure of the wavefunction [ 171. Near the mobility edge 
E, ,  P , ( E )  vanishes as (E,-,!?)".. We can easily identify, from r,, the exponents 0, 
in powers of E [7,10] 

D, = v A r , / ( q -  1 )  

= d - q E  + q(q2  - + 4 ) 5 ( 3 ) e 4 / 4 +  O( E ' )  ( 4 )  

with 5 ( 3 )  = 1.202. In order to consider the case of d = 3 we make the substitution 
E = 1. The result for the fractal dimension is now Do = d = 3 since the measure has 
compact support. The linear in E terms imply a log-normal distribution law and the 
higher order nonlinear in q corrections a faster decay in the tails. For the information 
dimension D1 = D, and the correlation dimension D2 the E expansion up to fourth 
order gives overestimates. An improved result for 0, was given in [lo] by means of 
a Borel resummation of the two-loop series. Our results must be seen in view of the 
more recent evaluations by Wegner [7] which allow a new Borel resummation which 
includes the four-loop terms. The 0, presented in this letter are in general less than 
both the Borel results. The corresponding f ( a )  spectrum of singularities can be also 
easily extracted [ 101 by Legendre transforming the D,s. 

Localised wavefunctions in the disordered Anderson model are self-similar only 
in a trivial way. In the inculating regime the distributions of many local quantities 
(wavefunction amplitude, current, local density of states, etc) become asymptotically 
log-normal [ l l ,  181. Consequently two-parameter scaling holds [18] for the first two 
cumulants which describe the distribution of logl$,,(r)l at site r. This naturally leads 
to a kind of multifractal scaling described by a set of related in this case generalised 
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Lyapunov exponents L ( q )  = yq + ( p / 2 ) q 2 ,  q E [-CO, +CO]?. The mean inverse localisa- 
tion length y is defined from the averaged logarithmic response of the wavefunction 
and p is related to its statistical variance. For weak disorder, even in one dimension, 
deviations from the log-normal law have been found [ 101 which imply a set of unrelated 
L ( q ) .  This can be seen as a precursor of the full critical fluctuation effects which are 
absent in one-dimension but studied in this letter. It was further argued [ 113 that the 
distributions in the metallic regime behave normally but have log-normal tails instead 
as a remnant of localisation. Then the variance of the conductance appears as a 
universal number. In order to check the suggested behaviour [ l l ]  we have studied 
the full distribution of the local wavefunction amplitudes. In figure 3 we present results 
for distribution function n ( p )  where n ( p )  dp is the number of sites with squared 
wavefunction amplitude in the range [ p, p + dp] for diperent values of the disorder. 
At the mobility edge the observed patterns indicate the presence of non-universal tails 
in the small amplitude (right-hand side of the figure) which cannot be fitted to a 
Gaussian law. The role of these tails becomes more pronounced as we enter the 
metallic regime (e.g. for 1 << L<< 5, where 1 is the mean free path for elastic scattering). 
For the insulating regime the distributions broaden and approach an approximate 
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Figure 3. The normalised distribution of the wavefunction amplitudes above, below and 
at the mobility edge for many finite ( l o x  l o x  10) random samples. It can be seen that the 
role of the non-universal high -In p tail increases as we move in the metallic regime (L < 5). 
The arrow indicates the position which corresponds to the amplitude of extended states 
for the given system size. In that case the distribution is centred closer to this value and 
has a longer tail while in the localised regime the distribution is centred at higher -In p 
values, very broad and approximately Gaussian for the In p (log-normal). 

t The exponents 139) are defined in [ 1 1 3  and describe the sample to sample fluctuations for the moments 
of the wavefunction. Their Legendre transform leads to a parabolic h ( a )  spectrum, a E [-CO, +a]. From 
the definitions y = l i m , , , ~ ~ ( l / ~ r ~ ) . ( l n ~ ~ ( r ) ~ ) ,  + = l i m , , , ~ ~ ( l / ~ r ~ ) ~ ( ( ( l n ~ ~ ( r ) ~ ) 2 ) - ( l n ~ ~ ( r ) ~ ) 2 )  the relative root 
mean square 6r,r is proportional to (&/y)(l/m)), i.e. y self-averages in the thermodynamic limit ( I r l+  CO). 
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log-normal form. No qualitative changes occur in the distributions of figure 3 by 
varying the system size N. In figure 4 we plot the critical distribution for two different 
values of N on the basis of an approximate scaling?. We have also checked our results 
by varying the number of critical states with no significant changes. 
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Figure 4. Approximate scaling of the normalised critical distributions for L = 10, 14 by 
assuming a log-normal distribution for n (  p ) .  

In this letter we described the local eigenfunction probability distributions which 
arise in the study of the Anderson transition. The present work was initiated by 
Wegner's calculations [7] in 2 +  E dimensions which showed for the first time an 
anomalous growth for the moments of the wavefunction. The simple hypothesis [ 5 ]  
that only one quantity, e.g. the length-dependent dimensionless conductance, charac- 
terises the critical behaviour at a given length scale L has been extremely useful. 
However, we have shown that the description of the critical distribution of the wavefunc- 
tion amplitudes at the mobility edge requires an infinite set of unrelated exponents 
D,, in accord with Wegner's predictions. These results may also be viewed as a step 
towards the necessity for scaling the whole distributions as it is implied by the high 
order gradient terms in the nonlinear a-models discussed in [ 111. We may now pose 
the question: do these non-Gaussian for the log exotic effects allow finding a properly 
defined quantity which self-averages in the thermodynamic limit? Such a quantity 
exists only in the strongly localised regime. From studies in one-dimensional disordered 
systems in the limit of infinite size a localisation length y-' can be defined [18]. This 
definition also extends to quasi-one-dimensional systems [ 191 but may be insufficient 
for the description of the mesoscopic regime (i.e. when L becomes comparable to y - ' )  
due to fluctuations and it is still not clear whether it can uniquely describe the transition. 

t By assuming an inherent multiplicative process we can approximate n (  p )  by a log-normal distribution, 
i.e. n ( p ) ~ r e x p ( - ( l n p - ( l n p ) ) ~ / 2 A ~ )  with mean ( I n p ) E l n  N and variance A2Crln N. 
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In summary, we have shown that critical wavefunctions are multifractals which 
confirms previous calculations by Wegner [7]. We have numerically demonstrated that 
the critical wavefunctions in three dimensions cover a space of lower dimensionality 
(e.g. bi-dimensional in the information sense since D, ~ 2 ) .  Moreover we show that 
the broad log-normal distributions valid in the insulating regime cross over to distribu- 
tions with non-universal tails at the mobility edge. The existence of these tails is 
responsible for the rich scaling structure. This effect becomes even more pronounced 
in the region of mesoscopic fluctuations. Many questions in this area still remain, 
mostly concerning the identification of a proper scaling variable at the mobility edge. 
It is also natural to ask whether similar anomalous dimensions are likely to occur near 
the mobility edge in other disordered systems. Results on critical two-dimensional 
systems in the presence of spin-orbit scattering will appear in a forthcoming publication. 

I should like to thank G Paladin who drew my attention to [lo] and J Chalker for 
useful discussions. I am also grateful to the participants of the Schleching Conference 
for reviving my interest in the problem. This work was supported in part by a IIENEA 
research grant from the Greek Secretariat of Research and Technology and by DAAD 
during a study trip to PTB, D-3300 Braunschweig, West Germany. 
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